Transformations by Functions in Sobolev Spaces and Lower Semicontinuity for Parametric Variational Problems

نویسنده

  • V. J. MIZEL
چکیده

where Q <= Rm is a bounded domain, JS?W denotes m-dimensional Lebesgue measure, (p = (. An important example due to Besicovitch [1] has indicated that the situation here is a very delicate one. For m > 2, a result of this type was obtained by Morrey [7, Theorem 9.2.1] under the additional assumption that e W^Qf n C(Q)", p> m. This estimate, together with a few additional results concerning mappings <p of this type, is presented in the first part of this note.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Restricted Weak Lower Semicontinuity for Smooth Functional on Sobolev Spaces

We study a restricted weak lower semicontinuity property, which we call the (PS)-weak lower semicontinuity, for a smooth integral functional on the Sobolev space along all weakly convergent Palais-Smale sequences of the functional. By the Ekeland variational principle, the (PS)-weak lower semicontinuity is sufficient for the existence of minimizers under the usual coercivity assumption. In gene...

متن کامل

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

On a Restricted Weak Lower Semicontinuity for Smooth Functionals on Sobolev Spaces

This paper is motivated by a problem suggested in Müller [11] that concerns the weak lower semicontinuity of a smooth integral functional I(u) on a Sobolev space along all its weakly convergent minimizing sequences. Here we study a restricted weak lower semicontinuity of I(u) along all weakly convergent Palais-Smale sequences (that is, sequences {uk} satisfying I′(uk)→ 0). In view of Ekeland’s ...

متن کامل

Lower semicontinuity problems in Sobolev spaces with respect to a measure

For every finite nonnegative measure ft we introduce the Sobolev spaces W^'(Q,K) and we study the lower semicontinuity of functionals of the form where the integrand / is quasiconvex.

متن کامل

Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope

In this paper we make a survey of some recent developments of the theory of Sobolev spaces W (X, d,m), 1 < q < ∞, in metric measure spaces (X, d,m). In the final part of the paper we provide a new proof of the reflexivity of the Sobolev space based on Γ-convergence; this result extends Cheeger’s work because no Poincaré inequality is needed and the measure-theoretic doubling property is weakene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007